On the Randić index of graphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Randić index and the diameter of graphs

The Randić index R(G) of a graph G is defined as the sum of 1 √dudv over all edges uv of G, where du and dv are the degrees of vertices u and v, respectively. Let D(G) be the diameter of Gwhen G is connected. Aouchiche et al. (2007) [1] conjectured that among all connected graphs G on n vertices the path Pn achieves the minimum values for both R(G)/D(G) and R(G) − D(G). We prove this conjecture...

متن کامل

On the Higher Randić Index

Let G be a simple graph with vertex set V(G) {v1,v2 ,...vn} . For every vertex i v , ( ) i  v represents the degree of vertex i v . The h-th order of Randić index, h R is defined as the sum of terms 1 2 1 1 ( ), ( )... ( ) i i ih  v  v  v  over all paths of length h contained (as sub graphs) in G . In this paper , some bounds for higher Randić index and a method for computing the higher R...

متن کامل

Hermitian-Randić matrix and Hermitian-Randić energy of mixed graphs

Let M be a mixed graph and [Formula: see text] be its Hermitian-adjacency matrix. If we add a Randić weight to every edge and arc in M, then we can get a new weighted Hermitian-adjacency matrix. What are the properties of this new matrix? Motivated by this, we define the Hermitian-Randić matrix [Formula: see text] of a mixed graph M, where [Formula: see text] ([Formula: see text]) if [Formula: ...

متن کامل

On the harmonic index of bicyclic graphs

The harmonic index of a graph $G$, denoted by $H(G)$, is defined asthe sum of weights $2/[d(u)+d(v)]$ over all edges $uv$ of $G$, where$d(u)$ denotes the degree of a vertex $u$. Hu and Zhou [Y. Hu and X. Zhou, WSEAS Trans. Math. {bf 12} (2013) 716--726] proved that for any bicyclic graph $G$ of order $ngeq 4$, $H(G)le frac{n}{2}-frac{1}{15}$ and characterize all extremal bicyclic graphs.In this...

متن کامل

A proof for a conjecture on the Randić index of graphs with diameter

The Randić index R(G) of a graph G is defined by R(G) = ∑ uv 1 √ d(u)d(v) , where d(u) is the degree of a vertex u in G and the summation extends over all edges uv of G. Aouchiche et al. proposed a conjecture on the relationship between the Randić index and the diameter: for any connected graph on n ≥ 3 vertices with the Randić index R(G) and the diameter D(G), R(G) − D(G) ≥ √ 2 − n+1 2 and R(G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2019

ISSN: 0012-365X

DOI: 10.1016/j.disc.2018.08.020